Graph Cuts, MRFs and Graphcut Textures

CS448V - Computational Video Manipulation
April 2019

Stochastic

Regular

Stochastic
Regular
Texture?

Textures are everywhere!

eseribing the response of that neurophysiolegically 1 It as a function of opsition-is perhally if such a f ramemerk
 scribe the wealth of simple. -ell ians (DOG), difference of
d neurophysiologicully
and 1 vative of a Ga response of the especially y f such a framework functionnction of position-i t helps us to understand the funeional description of that
ceper way. Whereas no generick a single concentual and usians DOG , disference of a f function of position is per
ivative of a Gaussian, higher donal description of that neut ivative of a Guussian, higher donal description of that neur
he response od so on-can be a single conceptual and math he response od so on-can be a single conceptual and math
sstribing the response of that ne the wealt of simple-cell r Es a function of position-is perbphysiologically ${ }^{1 / 2}$ and infes
 tibe the wealth of simple-onceptual Whereas no generice
neurophsiog icall
net and th of simple), difference of offs

00000
00000
00000
0000

$85 \sqrt{2}$
5) 5

Graphcut Textures: Image and Video Synthesis Using Graph Cuts

Kwatra et al. 2003

Graphcut Textures: Image and Video Synthesis Using Graph Cuts

Kwatra et al. 2003

Graph Cuts

Graph Cuts

Graph Cuts

Max-flow Min-cut theorem

Max-flow Min-cut theorem

What is a flow?...

Max-flow Min-cut theorem

Max-flow Min-cut theorem

Cuts \& Flows

Cuts \& Flows

Many variants:

- directed/undirected
- with/without terminals
- multi-cut
- non integer weights
- negative weights
- ...

Cuts \& Flows

Many variants:

- directed/undirected
- with/without terminals
- multi-cut
- non integer weights
- negative weights
- ...

Many many applications!

Max Bipartite Match

Max Bipartite Match

Max Bipartite Match

Max Bipartite Match

Back to Graphcut Textures...

Where to place next patch?

Which pixels to use?

Which pixels to use?

Which pixels to use?

Graph cuts to the rescue

Which pixels to use?

Graph cuts to the rescue

Which pixels to use?

Graph cuts to the rescue

Which pixels to use?

Graph cuts to the rescue

$$
M(s, t)=\|A(s)-B(s)\|+\|A(t)-B(t)\|
$$

Which pixels to use?

Cut at most one edge!

Which pixels to use?

Which pixels to use?

Which pixels to use?

Kept old seam

Which pixels to use?

Updated seam

Which pixels to use?

Removed seam

Which pixels to use?

Which pixels to use?

Which pixels to use?

What might happen if we only connect a few pixels to B ?

Minor detour: MRFs

Markov Random Field

Markov Random Field

Reminder: Markov property

Markov Random Field

Reminder: Markov property
"memoryless"

Markov Random Field

Reminder: Markov property
"memoryless"
For a discrete process: $\quad P\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}, \ldots, X_{0}=x_{0}\right)=P\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}\right)$

Markov Random Field

Reminder: Markov property
 "memoryless"

For a discrete process: $\quad P\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}, \ldots, X_{0}=x_{0}\right)=P\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}\right)$

What about fields?

Markov Random Field

Reminder: Markov property
 "memoryless"

For a discrete process: $\quad P\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}, \ldots, X_{0}=x_{0}\right)=P\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}\right)$

What about fields?

two non-adjacent variables are conditionally independent given all other variables

Markov Random Field

Reminder: Markov property
 "memoryless"

For a discrete process: $\quad P\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}, \ldots, X_{0}=x_{0}\right)=P\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}\right)$

What about fields?

A variable
is conditionally independent
of all other variables
given its neighbors

Markov Random Field

Reminder: Markov property
 "memoryless"

For a discrete process: $\quad P\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}, \ldots, X_{0}=x_{0}\right)=P\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}\right)$

What about fields?

Markov Random Field

Where to place next patch?

Which pixels to use?

Placing the next patch

Placing the next patch

- Random placement

Placing the next patch

- Random placement
- Entire patch matching

Placing the next patch

- Random placement
- Entire patch matching
- Sub-patch matching

Placing the next patch

- Random placement
- Entire patch matching
- Sub-patch matching

Results

describisuar cuthtar neuivin-ule mi describing the response of that neuro ht as a function of position-is perhar functional description of that neuron. seek a single conceptual and mathem. ascribe the wealth of simple-cell recer Id neurophysiologically ${ }^{1-3}$ and inferred especially if such a framework has the it helps us to understand the functio leeper way. Whereas no generic mon ussians (DOG), difference of offset C rivative of a Gaussian, higher derivati function, and so on-can be expecto imple-cell receptive field, we noneth
describing the response of that neurophysiologically ${ }^{1-3}$ and it as a function of position-is perhally if such a framework functional description of that neuron. us to understand the seex a single conceptual and mathr way. Whereas no geni scribe the wealth of simple-cell ians (DOG), difference of d neurophysiologically ${ }^{1-3}$ and ivative of a Ga response of tha especially if such a framework functionnction of position-i t helps us to understand the funeional description of that eeper way. Whereas no generick a single conceptual and i ussians (DOG), difference of a function of position-is per ivative of a Gaussian, higher donal description of that neur he response od so on-can be a single conceptual and math uscribing the response of that ne the wealth of simple-cell n as a function of position-is perbphysiologically ${ }^{1-3}$ and infe: ictional description of that neurony if such a framework has ik a single conceptual and mathems to understand the fun ribe the wealth of simple-onceptual Whereas no generic neurophysiologically ${ }^{1-3}$ and th of simple), difference of offs pecially if such a frameworlogically ${ }^{1-3}$ Gaussian, higher deri velps us to understand such a framewor so on-can be exp per way. Whereas us to understand the fun field, we nor

 555 ? 5 ?

Video synthesis

Temporally stationary

Spatio-temporally stationary

Temporally stationary

Spatio-temporally stationary

How should this affect patch search strategy?

Temporally stationary

Video Textures
$+$

Per-pixel transition timing

Seam optimization

Original

Original

Temporally stationary

Spatio-temporally stationary

Can search patches in time and space!

Spatio-temporally stationary

Can search patches in time and space!

Spatio-temporally stationary

Robust results even for short sequences

Can search patches in time and space!

Spatio-temporally stationary

Robust results even for short sequences

Can make videos larger

Harder to create loops. Why?

Harder to create loops. Why?

Harder to create loops. Why?

Solution: explicitly force beginning and end to match

Harder to create loops. Why?

Solution: explicitly force beginning and end to match

Recap

Recap

- Textures are everywhere!

Recap

- Textures are everywhere!

- Add to your tool belt: Graph Cuts

Recap

- Textures are everywhere!

- Add to your tool belt: Graph Cuts

- Graphcut Textures

What didn't we cover?

What didn't we cover?

- Many things!

What didn't we cover?

- Many things!
- E.g., image analogies

What didn't we cover?

- Many things!
- E.g., image analogies
- Convert between different representations of an image

Unfiltered source (A)

Filtered source (A^{\prime})

What didn't we cover?

- Many things!
- E.g., image analogies
- Convert between different representations of an image
- Stylization

What didn't we cover?

- Many things!
- E.g., image analogies
- Convert between different representations of an image
- Stylization
- We will discuss these applications later in the course (using more recent methods)

A

